jueves, 13 de febrero de 2014

MI PLANTA Y YO

MI PLANTA Y YO


Durante la cátedra de biologia, a más de aprender a cerca de la materia, también aprendimos a valorar a la naturaleza mediante la siembra de una planta.

 Aprendimos a ser responsables dándoles cuidado mutuo a nuestras plantas.
Debemos recalcar que los árboles y plantas en general son los pulmones de la tierra y que sin ellas no existiria el oxigeno que necesitamos para sobrevivir.

Es necesario mantener la naturaleza intacta y dejar un legado a las generaciones futuras.





Sólo con nuestras manos salvaremos al mundo......!!!
Si talas un árbol siembra dos en su lugar...!!

domingo, 9 de febrero de 2014

HISTOLOGIA

ORGANIZACIÓN ANIMAL. HISTOLOGÍA ANIMAL.
 
La especialización en los tejidos animales es fantástica. Existen más de 200 tejidos animales diferentes, dentro de un mismo vertebrado, agrupados en unos cuantos tejidos generales: epitelios, muscular, nervioso y conectivo.
Tejido Epitelial
El tejido epitelial se deriva de una palabra latina que significa "tejer". Las células que forman los tejidos a veces se "tejen", junto con las fibras extracelulares. 
El tejido epitelial cubre el exterior del cuerpo y las líneas de órganos y cavidades. Las células de este tipo de tejido están estrechamente agrupadas entre sí y se unieron con poco espacio entre ellos. Con una estructura apretada esperaríamos tejido epitelial de servir tal vez algún tipo de barrera y la función protectora y que es ciertamente el caso.Tejido epitelial ayuda para proteger a los organismos a partir de microorganismos, lesiones, y la pérdida de fluido. En un epitelio, la superficie libre está generalmente expuesto a fluido o el aire, mientras que la superficie inferior está unido a una membrana basal. 
Clases de tejido epitelial 

Las funciones de los tejidos epiteliales son:

Protección - como una barrera entre el mundo exterior (o de los espacios interiores) y nuestros cuerpos.
Secreción - cuando nuestro cuerpo necesita para liberar el material, al igual que las hormonas en la sangre, este tejido tiene que permitir este tipo de material para pasar a través.A menudo, es las células en el tejido epitelial que hacen que el material para la secreción.
Absorción - tejido epitelial que enfrenta nuestro sistema digestivo tiene que ser muy bueno en la absorción de nutrientes desde el lumen del tracto digestivo con el fin para nosotros para conseguir lo que necesitamos de lo que comemos.
La excreción - tejido epitelial incluso líneas de la lumina excretor, como las extensiones de los riñones a través de la uretra.
Tejido Conjuntivo, conectivo o de sostén

Es un tejido formado por células poco diferenciadas, es decir, poco transformadas y con abundante matriz extracelular (sustancia intercelular). Se encarga de unir o ligar entre si a los demás tejidos, brindando sostén y nutrición. Es el tejido que tiene más amplia distribución en nuestro organismo.
Los tejidos conectivos derivan del mesénquima, que es un tejido embrionario que deriva del mesodermo (hoja germinal media).

Funciones generales

  • Sirve de soporte y sostén de órganos, pues los tejidos óseo y cartilaginoso son los principales responsables del sostenimiento del cuerpo humano.
  • Nutrición al resto de los tejidos (principalmente al tejido epitelial).
  • Protección y defensa a través de las células plasmáticas y macrófagas, que integra el sistema inmunitario de defensa contra las proteínas extrañas presentes en las bacterias, virus, células tumorales, etc.
  • Relleno, es decir, une entre si estructuras vecinas.

    Componentes

  • 3.1. CÉLULAS:
  • 3.1.1 Fibroblasto (células de Unna, desmocito). Son las células más abundantes y representativas del tejido conectivo. Sintetiza proteínas (colágeno y elastina). Que al polimerizarse dan origen a las fibras conectivas (colágenas, elásticas y reticulares). Produce también glucosaminoglucanos (acido hialurónico, cemento tisular) que viene a ser el constituyente de la sustancia fundamental. Asimismo, interviene en la reparación de tejidos lesionados (cicatrización de heridas).
Es una célula aplanada, con prolongaciones ramificadas, dotada de movilidad, pero de movimiento lento. 
3.1.2 Célula adiposa (adipocito, lipocito). Presenta una gota de grasa que ocupa gran parte del citoplasma, rechazando a su núcleo, el cual es periférico. Sintetiza, almacena y libera ácidos grasos. Es un tejido conectivo laxo se encuentra como células separadas o grupos celulares. Cuando se acumulan en grandes cantidades se denomina tejido adiposo. Los adipocitos tienen la peculiar característica de no poder ejecutar la mitosis.
 
3.1.3 Célula cebada (mastocito, msatzellen, célula diana, célula de Ehrlinch, heparinocito). Presenta granulaciones en su citoplasma, las cuales contiene sustancias químicas como heparina, histamina, factor quimiotáctico de los eosinófilos y factor quimiotáctico de los neutrófilos. La heparina actúa como anticoagulante impidiendo la formación de coágulos en el interior de los vasos sanguíneos. La histamina es una sustancia química que dilata los vasos pequeños durante la inflamación. El factor quimiotáctico de los eosinófilos atrae a estas células hacia el sitio inflamado y limitan la reacción inflamatoria. El factor quimiotáctico de los neutrófilos atrae a estas células hacia el sitio inflamado, estas células fagocitan y matan a los microorganismos si los encuentran.

3.1.4 Macrófago. Se forma a partir de los monocitos (tipo de glóbulo blanco). Interviene en la defensa del organismo mediante la propiedad de fagocitosis (fagocitan restos de células, material intercelular alterado, bacterias y partículas inertes que penetran al organismo). Son de dos tipos:
Macrófago fija (histiocito): Forma parte del sistema fagocítico mononuclear.  
 
3.1.5 Célula pIasmática (plasmocito). Se forma a partir de un tipo de leucocito (Glóbulo blanco) Llamado linfocito B. Sintetiza anticuerpos o inmunoglobulinas, los cuales intervienen en la defensa del organismo (inmunidad humoral). Tiene forma ovoide y su núcleo es excéntrico. La cromatina de su núcleo se dispone semejante a la rueda de una carreta. Aunque se encuentra en muchos lugares del organismo, la mayoría residen en el aparato gastrointestinal y en las glándulas mamarias.

3.1.6 Leucocitos. (glóbulos blancos, fagocitos). Son células de la sangre que llegan al tejido conectivo con el objeto de combatir una inflamación. Los neutrófilos fagocitan a las bacterias en las zonas de inflamación aguda, lo cual tiene por resultado la formación de pus, que es una acumulación de neutrófilos muertos y detritus. Al igual que los neutrófilos, los eosinófilos se ven atraídos hacia las zonas de inflamación por la acción de los factores quimiotáctico de los leucocitos. Asimismo, en los sitios de inflamación crónica abundan los linfocitos.
Los leucocitos más frecuentes en el tejido conjuntivo son: los neutrófilos, eosinófilos y los linfocitos.

Clasificación

4.2.1. Tejido conectivo laxo. Se llama tejido areolar y es, a la vez, el tejido conectivo más común y más ampliamente distribuido. Presenta varios tipos de células, siendo las más comunes los fibroblastos y macrófagos. Se encuentra en la piel, mucosa y glandulas.

 

4.2.2. Tejido conectivo denso. Esta constituido por una gran cantidad de haces gruesos de fibras colágenas. La sustancia intercelular amorfa y vascularización son escasas. Es poco flexible y muy resistente a la tracción.

4.2.3. Tejido elástico. Es un tejido formado por abundantes fibras elásticas, gruesas, paralelas y organizadas en haces separados por tejido conectivo laxo. Los fibroblastos se ubican entre las fibras elásticas. La riqueza de sus fibras elásticas proporciona a este tejido un color amarillo y una gran elasticidad y resistencia, lo cual permite que determinadas estructuras puedan ejercer eficazmente sus funciones. Localización: Se ubica en los en los ligamentos amarillos de la columna vertebral y en el ligamento suspensor del pene.

4.2.4. Tejido adiposo. Es una variedad de tejido conectivo donde hay una predominancia de células adiposas. Estas células pueden hallarse aisladas o en pequeños grupos en el tejido conectivo común, pero la mayoría de ellas se agrupan en el tejido adiposo distribuido por el cuerpo. De acuerdo a la estructura de sus células y por su localización, color y función, se divide en dos variedades. 

 
4.2.5. Tejido cartilaginoso. Es un tejido conectivo de consistencia semirrígida semejante al plástico que se encuentra adaptado para soportar peso y su eficacia, en este sentido, solo es superada por el tejido óseo.
Presenta pocas células y abundante sustancia intercelular, llamada también matriz cartilaginosa. Las propiedades del cartílago dependen de las características físico - químicas de la matriz, que está constituida por colágena, en asociación con macromoléculas de glucosaminoglicanos; también puede contener elastina.
 
4.2.6. Tejido Óseo. Es un tejido conectivo especial con abundante matriz extracelular y de consistencia rígida. Forma los huesos del esqueleto, el cual sostiene y protege nuestros órganos y nos permite el movimiento.
Es uno de los tejidos más resistentes a la tensión y uno de los más rígidos del cuerpo humano. Cambia constantemente de forma en relación con las tensiones que recibe. Las propiedades del tejido óseo están dadas por las características de la matriz ósea.


4.2.7.T.C.D. RETICULAR: es un tipo especial de tejido dado que las células reticulares son diferentes de los fibroblastos comunes. Se encuentra en la medula ósea y tejido linfoide y esta compuesta por una red de fibras reticulares anastomosadas.

4.2.8.T.C.D. MUCOIDE: amplia distribución en el feto, bajo la piel pero especialmente en la gelatina de Wharton, en el cordón umbilical. Es muy característica la presencia de abundante sustancia intercelular blanda y gelatinosa. Numerosas fibras de colágenos.
Solo se encuentra en la pulpa dentaria después del nacimiento.
 Tejido Muscular
El tejido muscular es el responsable de los movimientos corporales. Está constituido por células alargadas, las fibras musculares, caracterizadas por la presencia de gran cantidad de filamentos citoplasmáticos específicos.
Las células musculares tienen origen mesodérmico y su diferenciación ocurre principalmente en un proceso de alargamiento gradual, son síntesis simultánea de proteínas filamentosas.
De acuerdo con sus características morfológicas y funcionales se pueden diferenciar en los mamíferos tres tipos de tejido muscular, el músculo liso, estriado esquelético y cardiaco.
Clases de tejido muscular
 

ESTRIADO ESQUELETICO

Está formado por haces de células muy largas (hasta de 30 cm.) cilíndricas y multinucleadas, con diámetro que varía de 10 a 100 µm., llamadas fibras musculares estriadas.

Las fibras musculares están organizadas en haces envueltos por una membrana externa de tejido conjuntivo, llamada empimisio. De éste parten septos muy finos de tejido conjuntivo, que se dirigen hacia el interior del músculo, dividiéndolo en fascículos, estos septos se llaman perimisio. Cada fibra muscular está rodeada por una capa muy fina de fibras reticulares, formando el endominsio.

El tejido conjuntivo mantiene las fibras musculares unidas, permitiendo que la fuerza de contracción generada por cada fibra individualmente actúe sobre el músculo entero, contribuyendo así a su contracción. Este papel del tejido conjuntivo tiene gran importancia porque las fibras generalmente no se extienden de un extremo a otro del músculo.
También por intermedio del tejido conjuntivo la fuerza de contracción del músculo se transmite a otras estructuras como tendones ligamentos, aponeurosis y huesos.
Los vasos sanguíneos penetran en el músculo a través de los septos del tejido conjuntivo y forman una red rica en capilares distribuidos paralelamente a las fibras musculares. Estas fibras se adelgazan en las extremidades y se observa una transición gradual de músculo a tendón. Estudios en esta región de transición al microscopio electrónico reveló que las fibras de colágena del tendón se insertan en pliegues complejos del sarcolema presente en esta zona. Cada fibra muscular presenta cerca de su centro una terminación nerviosa llamada placa motora. La fibra muscular está delimitada por una membrana llamada sarcolema y su citoplasma se presenta lleno principalmente de fibrillas paralelas, las miofibrillas.
Las miofibrillas son estructuras cilíndricas, con un diámetro de 1 a 2 µm. y se distribuyen longitudinalmente a la fibra muscular, ocupando casi por completo su interior. Al microscopio se observan estriaciones transversales originadas por la alternancia de bandas claras y oscuras. La estriación es debida a repetición de unidades llamadas sarcómeros. Cada unidad está formada por la parte de la miofibrilla que queda entre dos líneas Z y contiene una banda A.
MUSCULO CARDIACO 

Constituido por células alargadas, formando columnas que se anastomosan irregularmente. Estas células también presentan estriaciones transversales, pero pueden distinguirse fácilmente de las fibras musculares esqueléticas por el hecho de poseer solo uno o dos núcleos centrales. La dirección de las células cardíacas es muy irregular y frecuentemente se pueden encontrar con varias orientaciones, en la misma área de una preparación microscópica, formando haces o columnas.
Esas columnas están revestidas por una fina vaina de tejido conjuntivo, equivalente al endomisio del músculo esquelético. Hay abundante red de capilares sanguíneos entre las células siguiendo una dirección longitudinal a éstas.
La célula muscular cardiaca es muy semejante a la fibra muscular esquelética , aunque posee más sarcoplasma, mitocondrias y glucógeno. También llama la atención el hecho de que en los músculos cardiacos, los filamentos ocupen casi la totalidad de la célula y no se agrupen en haces de miofibrillas.
Una característica específica del músculo cardiaco es la presencia de líneas transversales intensamente coloreables que aparecen a intervalos regulares. Estos discos intercalares presentan complejos de unión que se encuentran en la interfase de células musculares adyacentes. Son uniones que aparecen como líneas rectas o muestran un aspecto en escalera. En la parte en escalera se distinguen dos regiones. La parte transversal, que cruza la fibra en línea recta y la parte lateral que va en paralelo a los miofilamentos.
MUSCULO LISO 


Esta formado por la asociación de células largas que pueden medir de 5 a 10 um. de diámetro por 80 a 200 µm. de largo. Están generalmente dispuestas en capas sobre todo en las paredes de los órganos huecos, como el tubo digestivo o vasos sanguíneos. Además de esta disposición encontramos células musculares lisas en el tejido conjuntivo que reviste ciertos órganos como la próstata y las vesículas seminales y en el tejido subcutáneo de determinadas regiones como el escroto y los pezones. También se pueden agrupar formando pequeños músculos individuados (músculo erector del pelo), o bien constituyendo la mayor parte de la pared del órgano, como el útero.
Las fibras musculares lisas están revestidas y mantenidas unidad por una red muy delicada de fibras reticulares. También encontramos vasos y nervios que penetran y ramifican entre las células.
En el corte transversal el músculo liso se presenta como un aglomerado de estructuras circulares o poligonales que pueden ocasionalmente presentar un núcleo central. En corte longitudinal se distinguen una capa de células fusiformes paralelas.


                                                                        Tejido Nervioso


El tejido nervioso, que comprende tal vez hasta un billón de neuronas con múltiples de interconexiones. Las neuronas tienen receptores, para recibir diferentes tipos de estímulos (ej. Mecánicos, químicos térmicos) y transducirlos en impulsos nerviosos.
Para llevar a cabo estas funciones, el sistema nervioso esta organizado, por el sistema nervioso central (SNC) que comprende en encéfalo y la médula espinal, y el sistema nervioso periférico (SNP) comprende los nervios craneales, nervios raquídeos y sus ganglios relacionados.
El SNC se divide en un componente sensorial (aferente) y un componente motor (eferente), que se origina en el SNC y transmite impulsos a órganos efectores en la totalidad del cuerpo.
Da manera adicional, el componente motor se subdivide de la siguiente manera:
  • Sistema somático los impulsos se originan en el SNC se transmiten directamente a través de una neurona a musculo esquelético.
  • Sistema autónomo los impulsos que provienen de SNC se transmiten primero en un ganglio autónomo a través de una neurona; una segunda neurona que se origina en el ganglio autónomo lleva el impulso a músculos liso y músculos cardiacos o glándulas.
El tejido nervioso contiene muchas otras células que se denominan en conjuntos de células neurogliales, que no reciben ni transmiten impulsos; en lugar de ello, estas células apoyan a las neuronas en diversas formas.

Desarrollo del tejido nervioso

A medida que se desarrolla el notocordio, libera moléculas de señalamiento que inducen al ectodermo a formar neuroepitelio, que se engruesa y forma la placa neural, su engrosamiento se curva asta formar surco neural, asta que se reúnen y forman el tubo neural el tubo neural forma la médula espinal. Además, el tubo neural de origen a la neuroglia, epéndimos, neuronas y plexos coroideos.
Una masa pequeña de células en los bordes de la placa neural que no se incorporan en el tubo neural forma las células de la cresta neural. Unas ves que llegan a sus destinos estas células crean al final muchas estructuras, entre ellas las siguientes:
  • La mayor parte de componentes sensoriales del SNP.
  • Neuronas sensoriales de ganglios sensoriales craneales y raquídeos (ganglios de raíz dorsal).
  • Ganglios autónomos y las neuronas autónomas posganglionares que se originan en ellos.
  • Gran parte del mesénquima de la parte anterior de la cabeza y el cuello.
  • Melanocitos de la piel y la mucosa bucal.
  • Odontoblastos (células encargadas de producir dentina).
  • Células cromafines de la médula suprarrenal.
  • Células de las aracnoides y la piamadre.
  • Células satélites de ganglios periféricos.
  • Células de Schwann.


domingo, 12 de enero de 2014

Biologia celular


Biologia celular
La célula es la unidad anatómica, funcional y genética de los seres vivos.
La célula es una estructura constituida por tres elementos básicos:
1.- membrana plasmática,
2.- citoplasma y
3.- material genético (ADN).
Posee la capacidad de realizar tres funciones vitales:
nutrición, relación y reproducción.
Se llaman eucariotas a las células que tienen la información genética envuelta dentro de una membrana que forman el núcleo.
Un organismo formado por células eucariotas se denomina eucarionte.
Muchos seres unicelulares tienen la información genética dispersa por su citoplasma, no tienen núcleo. A ese tipo de células se les da el nombre de procariotas






Celula animal completa from TANIABARREZUETA

Síntesis de Proteínas

INTRODUCCION
El ARN mensajero es el que lleva la información para la síntesis de proteínas, es decir, determina el orden en que se unirán los aminoácidos
La síntesis de proteínas o traducción tiene lugar en los ribosomas del citoplasma celular. Los aminoácidos son transportados por el ARN de transferencia (ARNt) , específico para cada uno de ellos, y son llevados hasta el ARN mensajero (ARNm), dónde se aparean el codón de éste y el anticodón del ARN de transferencia, por complementariedad de bases, y de ésta forma se sitúan en la posición que les corresponde.
Una vez finalizada la síntesis de una proteína, el ARN mensajero queda libre y puede ser leído de nuevo. De hecho, es muy frecuente que antes de que finalice una proteínaya está comenzando otra, con lo cual, una misma molécula de ARN mensajero, está siendo utilizada por varios ribosomassimultáneamente.
  • Los ARNt desempeñan un papel central en la síntesis de las proteínas
La síntesis proteica tiene lugar en el ribosoma, que se arma en el citosol a partir de dos subunidades riborrucleoproteicas provenientes del nucléolo. En el ribosoma el ARN mensajero (ARNm) se traduce en una proteína, para lo cual se requiere también la intervención de los ARN de transferencia (ARNt). El trabajo de los ARNt consiste en tomar del citosol a los aminoácidos y conducirlos al ribosoma en el orden marcado por los nucleótidos del ARNm, que son los moldes del sistema
La síntesis de las proteínas comienza con la unión entre sí de dos aminoácidos y continúa por el agregado de nuevos aminoácidos -de a uno por vez- en uno extremos de la cadena.
Como se sabe la clave de la traducción reside en el código genético, compuesto por combinaciones de tres nucleótidos consecutivos -o tripletes- en el ARNm. Los distintos tripletes se relacionan específicamente con tipos de aminoácidos usados en la síntesis de las proteínas.
Cada triplete constituye un codón: existen en total 64 codones, 61 de los cuales sirven para cifrar aminoácidos y 3 para marcar el cese de la traducción. Tal cantidad deriva de una relación matemática simple: los cuatro nucleótidos (A, U, C y G)se combinan de a tres, por lo que pueden generarse 64 (43).
Dado que existen más codones, (61) que tipos de aminoácidos (20), casi todos pueden ser reconocidos por más de un codón, por lo que algunos tripletes a como "sinónimos". Solamente el triptófano y la metionina -dos de los aminoácidos menos frecuentes en las proteínas - son codificados, cada uno, por un solo codón.
Los 20 aminoácidos que forman parte de las proteínas son: Serina (Ser,S), Treonina (Thr,T), Cisteína (Cys,C), Asparagina (Asn,N), Glutamina (Gln,Q) y Tirosina (Tyr,Y), Glicina (Gly,G), Alanina (Ala,A), Valina (Val,V), Leucina (Leu,L), Isoleucina (Ile,I), Metionina (Met,M), Prolina (Pro,P), Fenilalanina (Phe,F) y Triptófano (Trp,W), Ácido aspártico (Asp,D) y Ácido glutámico (Glu,E), Lisina (Lys,K), Arginina (Arg,R) e Histidina (His,H). 

La síntesis de proteínas ocurren en dos etapas:

TRANSCRIPCIÓN DEL ADN ( Ocurre en el núcleo de la célula)


TRADUCCIÓN DEL ARN mensajero (Ocurre en el citoplasma de la célula)

 

DIVISIÓN CELULAR

 LA DIVISIÓN CELULAR:
La división celular es, en realidad, un proceso doble. Estos dos procesos son:
- la división nuclear, o CARIOCINESIS
- la división citoplásmica, o CITOCINESIS

Ambos procesos pueden darse asociados, uno detrás del otro, o de forma independiente, primero uno, y algún tiempo después el otro.
Para que pueda darse la división nuclear es necesario que se de previamente otro proceso, que es la replicación del ADN.

MITOSIS, división del núcleo en dos núcleos hijos y división del citoplasma.

Fases de la Mitosis

La mitosis es un proceso continuo, que convencionalmente se divide en cuatro etapas: profase, metafase, anafase y telofase.

 Profase (pro: primero, antes). Los cromosomas se visualizan como largos filamentos dobles, que se van acortando y engrosando. Cada uno está formado por un par de cromátidas que permanecen unidas sólo a nivel del centrómero. En esta etapa los cromosomas pasan de la forma laxa de trabajo a la forma compacta de transporte. La envoltura nuclear se fracciona en una serie de cisternas que ya no se distinguen del RE, de manera que se vuelve invisible con el microscopio óptico. También los nucleolos desaparecen, se dispersan en el citoplasma en forma de ribosomas.

Metafase (meta: después, entre). Aparece el huso mitótico o acromático, formado por haces de microtúbulos; los cromosomas se unen a algunos microtúbulos a través de una estructura proteica laminar situada a cada lado del centrómero , denominada cinetocoro. También hay microtúbulos polares, más largos, que se solapan en la región ecuatorial de la célula. Los cromosomas muestran el máximo acortamiento y condensación, y son desplazados por los microtúbulos hasta que todos los centrómeros quedan en el plano ecuatorial. Al final de la metafase se produce la autoduplicación del ADN del centrómero, y en consecuencia su división.

Anafase (ana: arriba, ascendente). Se separan los centrómeros hijos, y las cromátidas, que ahora se convierten en cromosomas hijos. Cada juego de cromosomas hijos migra hacia un polo de la célula. El huso mitótico es la estructura que lleva a cabo la distribución de los cromosomas hijos en los dos núcleos hijos. El movimiento se realiza gracias a la actividad de los microtúbulos cromosómicos, que se van acortando en el extremo unido al cinetocoro.  Los microtúbulos polares se deslizan en sentido contrario, distanciando los dos grupos de cromosomas hijos.


Telofase (telos: fin). Comienza cuando los cromosomas hijos llegan a los polos de la célula. Los cromosomas hijos se alargan, pierden condensación, la envoltura nuclear se forma nuevamente a partir del RE rugoso y se forma el nucleolo a partir de la región organizadora del nucleolo de los cromosomas SAT.  

MEIOSIS I
Aunque el código genético de un ser humano se contiene dentro de 46 cromosomas, sólo la mitad de este número existe dentro de la célula de un esperma o huevo. Si las células no tuvieran la mitad, un huevo fertilizado contendría 92 cromosomas y sería insostenible. La meiosis, un tipo de división celular específica a la reproducción, evita esto partiendo en dos el número de cromosomas en una célula. La célula mostrada aquí se dividirá dos veces, produciendo cuatro células. Cada uno de estas células tendrá sólo el número medio de cromosomas, pero cada cromosoma contendrá la información genética de ambos padres.
Primera división meiótica
  1. Profase I. Es la más larga y compleja, puede durar hasta meses o años según las especies. Se subdivide en: leptoteno, se forman los cromosomas, con dos cromátidas; zigoteno, cada cromosoma se une íntimamente con su homólogo; paquiteno, los cromosomas homólogos permanece juntos formando un bivalente o tétrada;  diploteno, se empiezan a separar los cromosomas homólogos, observando los quiasmas; diacinesis, los cromosomas aumentan su condensación, distinguiéndose las dos cromátidas hermanas en el bivalente.
  2. Metafase I.   La envoltura nuclear y los nucleolos han desaparecido y los bivalentes se disponen en la placa ecuatorial.
  3. Anafase I.  Los dos cromosomas homólogos que forman el bivalente se separan, quedando cada cromosoma con sus dos cromátidas en cada polo.
  4. Telofase I. Según las especies, bien se desespiralizan los cromosomas y se forma la envoltura nuclear, o bien se inicia directamente la segunda división meiótica.
 

Segunda división meiótica
Está precedida de una breve interfase, denominada intercinesis, en la que nunca hay duplicación del ADN. Es parecida a una división mitótica, constituida por la profase II, la metafase II, la anafase II y la telofase II.
Gametogénesis
 
 
La gametogénesis es la formación de gametos por medio de la meiosis a partir de células germinales. Mediante este proceso, el número de cromosomas que existe en las células germinales se reduce de diploide (doble) a haploide (único), es decir, a la mitad del número de cromosomas que contiene una célula normal de la especie de que se trate. En el caso de los hombres si el proceso tiene como fin producir espermatozoides se le denomina espermatogénesis y se realiza en los testículos. En caso contrario, si el resultado son ovocitos se denomina ovogénesis y se lleva a cabo en los ovarios.
Este proceso se realiza en dos divisiones cromosómicas y citoplasmáticas, llamadas primera y segunda división meiótica o simplemente meiosis I y meiosis II. Ambas comprenden profase, prometafase, metafase, anafase, telofase y citocinesis. Durante la meiosis I los miembros de cada par homólogo de cromosomas se unen primero y luego se separan con el uso mitótico y se distribuyen en diferentes polos de la célula. En la meiosis II, las cromátidas hermanas que forman cada cromosoma se separan y se distribuyen en los núcleos de las nuevas células. Entre estas dos fases sucesivas no existe la fase S (duplicación del ADN).

Ovogénesis

 

La ovogénesis es el proceso de formación de los gametos femeninos.Tiene lugar en los ovarios. Los ovogonios se ubican en los folículos ováricos, crecen y tienen modificaciones; éstos llevan a la primera división meiótica que da como resultado un ovocito primario (que contiene la mayor parte del citoplasma) y un primer corpúsculo polar (su rol es llevarse la mitad de los cromosomas totales de la especie). Las dos células resultantes efectúan la meiosis II, del ovocito secundario se forman una célula grande (que tiene la mayor parte del citoplasma) y un segundo corpúsculo polar, estos se desintegran rápidamente, mientras que la célula grande se desarrolla convirtiéndose en los gametos femeninos llamados óvulos. El Gameto femenino queda estancado en meiosis II, específicamente en Metafase II; si éste Gameto es fecundado, la célula continúa Meiosis II para que sea Haploide. Al óvulo lo rodea una capa de diferentes células, llamada folículo de Graaf.
La ovogénesis cuenta con diversas fases, las cuales son:
  • Proliferación: durante el desarrollo embrionario, las células germinales de los ovarios sufren mitosis para originar a los ovogonios.
  • Crecimiento: en la pubertad crecen para originar los ovocitos de primer orden.
  • Maduración: el ovocito del primer orden sufre meiosis.
La ovogénesis comienza antes del nacimiento y se completa durante la vida reproductiva de la mujer, al ocurrir la fecundación.

Espermatogénesis

 

La espermatogénesis es el proceso de producción de los gametos masculinos (espermatozoides) que tienen su producción en los testículos, específicamente en los tubulos seminíferos. Dentro de este, destacan los siguientes procesos:
  • Proliferación: las células germinales de los testiculos sufren mitosis para que la cantidad de espermatogonios sea amplia.
  • Crecimiento: las células germinales sufren su primera división meiótica para formar los llamados "espermatocitos 1". Luego sufren su segunda división meiótica, donde se forman los "espermatocitos 2".
  • Maduración: los espermatocitos 2, que ya son haploides y de cromosomas simples, se les genera el flagelo y el acrosoma. A estos espermatocitos 2, luego de su transformación se les llama espermátida.
  • Diferenciación: cada espermátida es diferente a otra por la variabilidad genética (crossing-over y permutación cromosómica).
En la espermatogénesis, por cada célula germinal se producen cuatro espermátidas.